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Abstract. Two-photon double ionization of the helium atom was the subject
of early experiments at FLASH and will be the subject of future benchmark
measurements of the associated electron angular and energy distributions. As
the photon energy of a single femtosecond pulse is raised from the threshold
for two-photon double ionization at 39.5 eV to beyond the sequential ionization
threshold at 54.4 eV, the electron ejection dynamics change from the highly
correlated motion associated with nonsequential absorption to the much less
correlated sequential ionization process. The signatures of both processes have
been predicted in accurate ab initio calculations of the joint angular and energy
distributions of the electrons, and those predictions contain some surprises. The
dominant terms that contribute to sequential ionization make their presence
apparent several eV below that threshold. In two-color pump probe experiments
with short pulses whose central frequencies require that the sequential ionization
process necessarily dominates, a two-electron interference pattern emerges that
depends on the pulse delay and the spin state of the atom.
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1. Introduction

Experiments using pulses of femtosecond or attosecond durations are opening the path
to probing electron dynamics in atoms and molecules on its intrinsic time scale. That
time scale ranges from a few hundred attoseconds or shorter (the classical period of
the first Bohr orbit in hydrogen is about 150 attoseconds), to several femtoseconds,
which is the time scale of charge migration in small organic molecule with a few
tens of atoms (Remacle & Levine 2006, Lunnemann et al. 2008). A six-cycle 500
attosecond pulse corresponds to an energy of 50 eV, so it is evident that pulses short
enough to probe electron dynamics in the time domain, even those containing only
a few cycles of the radiation field, will frequently be energetic enough to ionize or
multiply ionize the target atom or molecule and will generally be in the extreme
UV or shorter wavelength regions of the spectrum. Thus an understanding of the
fundamental processes that occur at these energies will be essential to designing and
interpreting these experiments.

At FLASH, pioneering experiments in this energy regime have been made
possible by the fact that free-electron lasers (V. Ayvazyan, et al. 2006) can reach
the intensities needed for acquiring robust signals in measurements of multiphoton
ionization, and which ultimately will be needed for measurements in pump/probe
experiments involving more than one photon at UV or higher energies. Of course, the
promise of ultrafast experiments in this energy domain has been also underscored by a
large number of recent measurements using high harmonic generation, some of which
are described by (Krausz & Ivanov 2009) and (Sekikawa et al. 2004) for example.
However, the intensities that can be reached at FLASH currently provide a significant
advantage for multiphoton measurements in the XUV.

Some of the first experiments on multiphoton ionization of atoms (Kurka
et al. 2009, Rudenko et al. 2008, Sorokin et al. 2007, Hasegawa et al. 2005) have already
revealed the difficulties in their interpretation that pose a challenge to theory, and more
such experiments are underway at FLASH and elsewhere (Ullrich 2009). Theoretical
calculations of benchmark accuracy on simple systems have now become necessary for
the analysis and understanding of observations that are necessarily carried out under
conditions where a number of ionization channels compete with the one that is the
focus of the measurement. The simplest target atom for such measurements is the
helium atom, and here we focus on its two-photon double ionization by photons of one
or two colors. The complete and unambiguous interpretation of those experiments
will form the foundation for the application of multiphoton ionization measurements
using free-electron lasers on more complicated atomic and molecular targets.

Unsurprisingly, two-photon double ionization of helium has been a subject of
intense theoretical interest in recent years (Palacios et al. 2007, Palacios et al. 2008,
Palacios et al. 2009a, Palacios et al. 2009b, Horner et al. 2007, Horner, McCurdy &
Rescigno 2008, Horner, Rescigno & McCurdy 2008, Feist et al. 2008, Nikolopoulos
& Lambropoulos 2007, Ivanov & Kheifets 2007, Foumouo et al. 2006, Kheifets &
Ivanov 2006, Hu et al. 2005, Feng & van der Hart 2003, Piraux et al. 2003, Nikolopoulos
& Lambropoulos 2001, Colgan & Pindzola 2002, Proulx et al. 1994, Shakeshaft 2007,
Foumouo, Antoine, Piraux, Malegat, Bachau & Shakeshaft 2008, Foumouo, Antoine
& Piraux 2008). These studies, only a sampling of which are cited here, have most
frequently focused on the energy range (40 to 54.4 eV) where double ionization must
proceed by nonsequential absorption of two photons. In that energy range electron
correlation must necessarily play an important role in the ionization mechanism,
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because the two electrons must share the energy of two photons in order to escape.
Recent theoretical investigations have also focussed on the transition to the dynamics
dominated by sequential absorption above 54.4 eV, and on what might be learned by
pump/probe experiments above that threshold. Although the system only contains
two electrons, its correlated double ionization dynamics upon absorption of two
photons are not easy to describe in accurate, predictive calculations, as is evidenced
by the fact that for a number of years there was disagreement on even the simplest
measurable quantity associated with that process, namely the total two-photon double
ionization cross section. Some consensus has by now been reached at this point.

In this article we will first review one of the theoretical methods used to date
in ab initio calculations on two-photon double ionization. In a survey of recent
results we will describe the integral cross sections and some of the behavior of the
joint angular distributions of the ejected electrons which reveal effects of electron
correlation in the initial and final states. However, those angular distributions have
been predicted to change when sufficiently short pulses are used, and we will discuss
that effect, in which changing the pulse duration apparently changes the electron
ejection dynamics that are observed. In the energy region just below the threshold
for sequential double ionization at 54.4 eV we will describe marked changes in both
total and single differential cross sections in which a partial signature of the dominant
contributions to sequential ionization can be seen below the energetic threshold for
that process. Finally we will describe some recent surprises predicted theoretically for
XUV pump/probe experiments in which a novel kind of interference pattern appears
in the joint distribution of energy shared by the two electrons.

2. Theory

2.1. The extraction of double ionization amplitudes from solutions of the

time-dependent Schrödinger equation

For two-electron atoms interacting with an intense UV or XUV pulse it is feasible
to solve the time-dependent Schrödinger equation (TDSE) numerically using a grid
representation for the coordinates of each electron. For intensities where up to
three or four photons are absorbed, these solutions can be found to almost arbitrary
accuracy with current computers and modern numerical algorithms, except very close
to ionization thresholds, where very large grids are required to describe Rydberg states
and slow continuum electrons, or for high energies, where the number of partial waves
and the densities of the underlying grids required become prohibitively large.

Thus, the central issue for these calculations is not the solution of the TDSE
to produce the wave packet describing the motion of the electrons during and after
the pulse, although that may require many processors of a large computer. Instead
the central problem is the calculation of the double ionization amplitudes from the
resulting wave packets for the ejection of electrons of specific energies. The double
ionization channel is in general a minor one, with single ionization being much more
probable. Moreover, double ionized states lie in the Coulomb three-body breakup
continuum where the Coulomb interactions continue to couple the motions of the
electrons over long distance. In this section we summarize the methods we use to solve
this problem in a way that allows the practical extraction of the double ionization
probabilities for energies within the bandwidth(s) of the pulse(s) used to create an
ionizing wave packet, without necessitating the use of prohibitively large grids or



Two-photon double ionization of He 4

explicit propagation to long times following the pulses.
Consider an atom initially in its ground state that is subjected to a radiation

pulse that starts at t = 0 and ends at t = T . We solve the TDSE using the dipole
approximation for the laser-atom interaction,

i
∂

∂t
Ψ(t) = H(t)Ψ(t) , (1)

where H(t) = H0 + Vt, with H0 being the atomic Hamiltonian and Vt the laser-atom
interaction. In the length gauge the interaction is given in terms of the electric field
is E(t), and the dipole operator µ = −e∑

i ri . The calculations we present here
were performed primarily in the length gauge with velocity gauge calculations used
in independent convergence tests. Our pulses have a sine-squared envelope and are
of total duration T so that for a a photon energy ω, the electric field and interaction
potential (for a single pulse, for example) can be written

E(t) =

{
E0Fω(t)ǫ̂ t ∈ [0, T ]

0 elsewhere
(2)

Vt = E(t) · µ , (3)

where E0 is the maximum field strength, and ǫ̂ is the polarization vector. The time
dependence of the field is given by the function pulse, Fω(t),

Fω(t) = sin2
( π
T
t
)

sin(ωt) . (4)

The pulse has ended at t = T , but the outgoing electrons are still interacting with
each other and the nucleus as the system continues to propagate under the influence
of the field-free Hamiltonian H0. Nonetheless, in principle the double ionization
probability for electrons to be ejected with specific momenta are determined already
at t = T as we can see by expanding Ψ(T ) in terms of sums and integrals over
solutions of the time-independent Schrödinger equation. If ψbound(r1, r2) contains the
contributions from the bound states of the atom, and n labels bound states of He+,
we can write

Ψ(r1, r2, T ) = ψbound(r1, r2) + ψsingle(r1, r2) + ψdouble(r1, r2)

= ψbound(r1, r2) +
∑

n

∫
dk3

n C(kn)ψ−

kn
(r1, r2)

+

∫
dk3

1

∫
dk3

2 C(k1,k2)ψ
−

k1,k2
(r1, r2) . (5)

The coefficients C(kn) and C(k1,k2) of the singly ionized states, ψ−

kn
(r1, r2) and

doubly ionized states, ψ−

k1,k2
(r1, r2), respectively, are the amplitudes for single and

double ionization. However it would appear that to calculate them at t = T we would
either have to project on the exact singly and doubly ionized wave functions (which
we do not know) or propagate to long enough times that the outgoing electrons are
no longer interacting appreciably.

We have shown how to avoid the necessity for integrating to long times after
the pulse, or for performing calculations with pulses of various lengths to determine
rates of ionization proportional to T and the Nth power of the intensity for N-
photon absorption. In the method we have developed (Palacios et al. 2007, Palacios
et al. 2008, Palacios et al. 2009a), we construct a scattered wave which is the Fourier
transform of the time-propagated the wave packet for a specific total energy E:

Ψsc ≡ −i lim
γ→0

∫
∞

0

dtei(E+iγ−H0)tΨ(T ) . (6)
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The function Ψsc contains all the physical information about processes leading to
final states at energy E with its asymptotic behavior determined by the single and
double ionization amplitudes. The solution of Eq. (6) is also a solution of the time-
independent equation

(E −H0)Ψsc = Ψ(T ) , (7)

with pure outgoing boundary conditions.
To solve Eq. (7) using a finite matrix representation of the atomic Hamiltonian,

H0, we need a way of applying those boundary conditions. However, they involve the
complicated asymptotic form of the exact solution of the three-body Coulomb breakup
problem (Alt & Mukhamedzhanov 1993, Kadyrov et al. 2003, Mukhamedzhanov
et al. 2006) which has proved extremely difficult to apply explicitly in numerical
calculations. Escaping this difficulty by imposing pure outgoing wave boundary
conditions implicitly is the purpose for which the method of exterior complex scaling
(ECS) was developed. In the ECS method the electronic coordinates are scaled only
beyond a radius R0 by a complex phase factor according to r → R0 + (r − R0)e

iη,
and the value of R0 is chosen large enough that the wave packet can be assumed not
to have reached that radius during the pulse. Thus our numerical grids must now be
extended into the complex plane, but only beyond R0. It is now understood (McCurdy
et al. 2004), that solving Eq. (7), with the boundary condition that the solution vanish
at the end of the complex portion of the numerical grid on which it is represented,
is formally equivalent to applying pure outgoing boundary conditions, no matter how
many electrons are being ejected.

It is worth mentioning that both the time propagation, for which we use the
Crank-Nicolson method, and the solution of the driven equation (Eq. (7)), are
performed with iterative linear equation solvers. For the time propagation, we use
the fact that the wave packet varys little with each time step, so very few iterations
are required for convergence. The solution of the final driven equation is more costly.
In practice, the time spent in solving Eq. (7) is about the same as the time required
to take a few hundred timesteps in the propagation.

The ionization amplitudes naturally appear in the asymptotic form of Ψsc at
a fixed energy. For an atomic target they can be extracted using surface integrals
involving Ψsc and atomic Coulomb functions (McCurdy et al. 2004). In particular,
for double ionization, which is the focus of our attention here, we have

C(k1,k2) =
1

2
eiχ

∫ [
φ−∗

k1
(r1)φ−∗

k2
∇Ψsc(r1, r2)

−Ψsc(r1, r2)∇ (φ−∗

k1
(r1)φ−∗

k2
(r2))

]
· dS , (8)

where the two-electron gradient is ∇ = (∇1,∇2), and the testing functions φ−
k

are
momentum-normalized Coulomb functions with a nuclear Z = 2. We emphasize that
these are not approximations to the final state of the system, but instead are the
appropriate functions to extract the asymptotic amplitudes from Ψsc in the limit of a
large volume enclosed by the surface integral, as can be shown from stationary phase
arguments. In the formula for the double ionization amplitudes, χ is an irrelevant
volume-dependent overall phase that makes no contribution to any physical observable.

The surface integral extraction of the amplitudes is performed on the real part
of the grid, close to the ECS turning point. Several factors must be considered in
deciding how large a grid is required. For very short pulses, the wave packet does not
spread very far and the grid size is then determined by the asymptotic behavior of the
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scattered wave. For pulses on the order of a few fs or more, the grid size is determined
by the minimum value of R0 needed to contain the spreading wave packet and avoid
unphysical reflections from the grid boundaries during the time propagation. For the
results presented here, a value of R0=130 bohr was found to be sufficient.

Now with the amplitudes C(k1,k2) in hand we turn to the task of defining the
double ionization cross sections in terms of them.

2.2. Two-photon ionization cross sections

To define the generalized cross section for the ejection of M electrons by N photons
we divide the rate of ejection (transition rate to the M-electron continuum) by Nth
power of the flux of photons

Q(N,M) =
We−(M)

(Fphoton)N
(9)

Making use of the rate of transitions into the continuum from Fermi’s Golden Rule
applied to two-photon absorption in the dipole approximation (length gauge) and
expressing the photon flux in terms of the electric field strength gives the generalized
cross section for the ejection of two electrons by two photons as

dσ2ω

dE1dΩ1dΩ2
=

2π

~
(2πα)2m2ω2k1k2

×|〈Ψ−

k1k2
|
∑

ǫ · ri[Ei + ~ω −H0]
−1

∑
ǫ · ri|Φi〉|2 (10)

The units of this generalized cross section are, e.g., cm4 sec/eV, and it is referred to
as the triple differential cross section (TDCS) for two-photon double ionization. If we
use a single pulse it can be calculated from the amplitudes C(k1,k2) as follows.

The amplitudes for ionization extracted via Eq. (8) will generally depend on
the parameters (intensity, bandwidth, etc.) of the radiation pulse that produced the
wavepacket being analyzed. However, if the intensities are such that time-dependent
perturbation theory (TDPT) gives an accurate description of the physical process and
the pulse durations are not too short, then the amplitudes can be used to construct
two-photon cross sections over the range of energies within the bandwidth of the pulse.
That assertion would be rigorously true for single photon processes, because the first-
order TDPT transition amplitude can be factored into a dipole matrix element times
a pulse dependent “shape function” depending on energy.

For two-photon processes an additional approximation is necessary to make that
factorization, which we have verified to be essentially exact provided there are no
intermediate state resonances that fall within the bandwidth of the pulse. We note that
in the present context, the sequential threshold acts like an intermediate resonance. It
is exact in the limit of long pulses. In this approximation, |C(k1,k2)|2 is proportional
to modulus squared of the matrix element in Eq. (10) and the proportionality
constant depends on the parameters of the pulse. The lengthy derivation (Palacios
et al. 2007, Palacios et al. 2008) of the working equations will not be reproduced here.
The result is

dσ2ω

dE1dΩ1dΩ2
=

8π3(∆Efi/2)2m2
~k1k2

c2|E0|4
|C(k1,k2)|2

|F̃(Ef , Ei, ω, T )|2
, (11)

and the effective energy shape function for the sine-squared radiation pulse is given
by

F̃(Ef , Ei, ω, T ) =
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6e−iT (2ω−∆Efi)
(
−1 + eiT (2ω−∆Efi)

)
π4

(2ω − ∆Efi) [T 4(2ω − ∆Efi)4 − 20π2T 2(2ω − ∆Efi)2 + 64π4]
, (12)

where Ei is the energy of the initial state, Ef is the energy of the final state (k2
1/2+k2

2/2
for double ionization), and ∆Efi = Ef − Ei.

It must be noted that above the threshold for sequential absorption the matrix
element in Eq. (10) becomes singular, due to contributions from free-free overlaps
between intermediate and final continuum states, as discussed by Horner et al. (Horner,
McCurdy & Rescigno 2008). So above that threshold the definition of the cross section
fails, and we can only speak of the ionization probability distribution |C(k1,k2)|2 for
a particular pulse. Nonetheless, for a finite length pulse the quantity on the right hand
side of Eq. (11) is still defined, and it is sometimes useful to plot it when comparing
the double ionization probabilities that come from pulses of different intensities or
durations – even though it is not in any sense a cross section. Obviously, in the case
that there is more than one pulse the definition of the cross section in Eq. (9) fails
and we must again focus on the pulse-dependent ionization probability distribution.

2.3. Numerical Implementation

In the calculations presented here, we represent the wave-function in terms of products
of two-electron radial functions and coupled spherical harmonics, YL,M

l1,l2
,

Ψ(r1, r2, t) =

lmax,Lmax∑

l1,l2,L

ψl1,l2,L(r1, r2, t) YL,M=0
l1,l2

(r̂1, r̂2) (13)

including all (L, l1, l2) configurations that can be constructed using some given value
of lmax for the individual electron angular momenta and Lmax for the total orbital
angular momentum. Our calculations here are restricted to weak fields and an initial
state with L = 0, and convergence is achieved by including only L = 0, 1, 2, as we have
verified by carrying out calculations at the field intensities used here with Lmax = 3.
The radial degrees of freedom are discretized using a finite-element, discrete variable
representation (FEM-DVR) with a product basis of Lobatto shape-functions (Rescigno
& McCurdy 2000, McCurdy et al. 2004).

The time-propagation in the presence of the field is carried out by using a Crank-
Nicholson propagator (see details in (Palacios et al. 2007)) on the real part of the
FEM-DVR grid. The end of the real part of the grid, R0, must be chosen large
enough to contain the spreading wavepacket over the duration of the pulse and avoid
unphysical reflections from the grid boundaries. Once the pulse(s) is over, the resulting
wavepacket is taken as the driving term for the scattered wave equation, which is solved
with a complex portion extending beyond R0 by 50 or 60 Bohr.

When there is more than one pulse or the pulse duration is long, larger grids
and higher angular momenta must be used to converge the calculations. In the
pump/probe calculations described below we used individual angular momenta up
to l = 14, and radial grids extending to 170 bohr. These are nonetheless much smaller
grids than would have been necessary to calculate the amplitudes by other means
not involving the solution of the scattered wave equation, Eq. (7). We emphasize
again that given the parameters of a particular pulse, or sequence of pulses, the time
propagation is carried out only once, and then the scattered wave equation can be
solved for any energy within the pulse bandwidth.
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3. One-color two-photon double ionization
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Figure 1. (Color online) Total two-photon double ionization cross sections as
a function of photon energy. [1] 2fs results (Palacios et al. 2009a); [2] (Feist
et al. 2008); [3] (Horner et al. 2007); [4] (Nikolopoulos & Lambropoulos 2007);
[5] (Ivanov & Kheifets 2007); [6] (FC) (Foumouo et al. 2006); [7] (NC) (Foumouo
et al. 2006); [8] (Hu et al. 2005); [9] (Piraux et al. 2003); [10] (Feng &
van der Hart 2003); [11] (Laulan & Bachau 2003); [12] (Nikolopoulos &
Lambropoulos 2001); [13] (Sorokin et al. 2007); [14] (Hasegawa et al. 2005).

A number of investigators have investigated the problem of calculating the two-
photon double ionization of helium in the nonsequential region, i.e., from 39.505 eV,
which is the two-photon double ionization potential, to 54.4 eV, above which double
ionization may proceed through a sequential absorption of each photon. Fig. 1 shows
the total cross sections in this region, including our recent calculations (reference [1] in
the figure) as well as previous work. With a few notable exceptions, there is agreement
among the various theoretical calculations on the shape and magnitude of the cross
section below 50 eV. The calculations also agree with one of the only two experimental
data points available in the literature (references [13] and [14] in the figure). The
rapid rise in the cross section above 52 eV, first predicted in a time-independent study
(reference [3] in the figure) and subsequently verified in more recent time-dependent
studies (labeled [1] and [2]), is caused by the virtual contribution of the singly ionized
intermediate states associated with the energetically closed sequential process.

In Fig. 2 we show results obtained with pulses of different durations. The shorter
the pulse, the fewer the number of time-dependent propagated wave packets that are
required to cover the whole interval of photon energies. For instance, for a pulse
duration of 450 as, the entire range plotted was computed by propagating only two
pulses and extracting the cross sections within their bandwidths using Eq. (11). We
find essentially perfect agreement with (Feist et al. 2008) when 3 fs pulses are used.
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Figure 2. (Color online) Total two-photon double ionization cross sections as a
function of photon energy. The current results are labeled with the corresponding
pulse durations.

We can use the same procedure above the sequential ionization threshold to
extract apparent cross sections via Eq. (11), with the understanding that they
will increase with pulse duration and formally diverge in the CW limit (Palacios
et al. 2009a). However, the relevant features in the region where sequential and
nonsequential double ionization compete (above 54.4 eV) appear in the electron energy
distributions. Fig. 3 shows double ionization probabilities as a function of the energy
sharing of the ejected electrons (squared amplitudes defined in Eq. (8)). Pulse duration
and intensity are fixed at 2 fs and 1012 W cm−2 respectively, and we plot different
photon energies in a range from 45.5 eV (22 cycles, where only nonsequential ionization
is possible) to 70.3 eV (34 cycles, already above the second sequential threshold, i.e.,
sequential ionization where the first photon produces He+(2s or 2p)). In order to
make them comparable, probabilities have been extracted at the central frequency of
each pulse.

In the nonsequential region, electron distributions are flat since the total energy
available is equally shared between both ejected electrons. As we approach the first
sequential threshold (see results for 26 and 28 cycles), the distribution shows two
symmetric peaks, one at E1 = Ei − ǫ1s + ~ω and the other E1 = ǫ1s + ~ω, where the
orbital energy of the He+ ion, ǫ1s, and the energy of the ground state of He, Ei, are
negative and referenced to the zero of energy of the three separated particles. The
heights of those peaks are controlled by the pulse duration and the product of the single
ionization cross sections σHe(Ei − ǫ1s +~ω)σHe+

(ǫ1s +~ω) (Palacios et al. 2009a). As
the photon energy is further increased, we reach the second threshold for sequential
ionization, in which the first step involves excitation ionization of the helium atom
leaving the helium ion in its 2s or 2p state at 65.4 eV. At energies above this point,
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Figure 3. (Color online) Electron energy distributions for a fixed pulse duration
of 2 fs and intensity of 1012 W cm−2 at different photon energies. Plotted
energies go from below the first sequential threshold to above the second sequential
threshold: 22 cycles (45.5 eV), 24 cycles (49.63 eV), 26 cycles (53.8 eV), 28 cycles
(57.9 eV), 30 cycles (62.05 eV) and 34 cycles (70.3 eV).

we expect a second pair of peaks in the electron energy distributions placed at the
energies given by E1 = Ei − ǫ2p + ~ω, and E1 = ǫ2p + ~ω, since the 2p and 2s states
of He+ are degenerate. Those peaks appear in Fig. 3 for 34 cycles (corresponding to
a photon energy of 70.3 eV) with a smaller intensity than the peaks associated with
the first sequential threshold since the cross section for excitation ionization is smaller
than that for simple ionization of He.

The positions of the second pair of sequential peaks are slightly shifted from
their expected energies. For 70 eV photons, the second pair of sequential peaks
should appear at 4.59 and 56.4 eV respectively, but they appear shifted to higher and
lower energies, respectively, by nearly 2 eV. This behavior is due to the use of finite
pulse lengths that allow the contributions of the two sequential processes proceeding
through the n = 1 and n = 2 states of He+ to interfere (Palacios et al. 2009a, Feist
et al. 2009a). In fact, for infinite pulse durations, the sequential peaks would appear
at the energies required by energy conservation. This shift and its pulse length
dependence is better shown in Fig. 4, which shows the behavior of the corresponding
electron energy distributions with varying pulse duration. The expected values for
the ejected electrons through the first and second sequential threshold are plotted
as vertical lines. In this figure we plot the apparent double ionization probability
distributions obtained through Eq. (11). Their corresponding units are 10−52 cm4 s
eV−1. For 2 fs pulses we find the four distinct peaks mentioned above. As the pulse
length is decreased these peaks broaden and even disappear at 250 as.

However tempting it may be to interpret the behavior shown in Fig. 4 as the
extinguishing of the sequential process in favor of the nonsequential process for shorter
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Figure 4. (Color online) Calculated electron energy distributions for pulse
duration of 250 as, 450 as, 1 fs and 2 fs at 70 eV and I=1012 W cm−2, showing
the peaks due to ionization via the n = 2 states of He+ that shift with pulse
duration.

pulses, the dependence of the electron energy distribution with pulse duration reflects
nothing more than the Fourier broadening of the pulses. Indeed, we have shown that
this behaviour is simply reproduced in time-dependent perturbation theory with a
simple model that neglects electron correlation and screening entirely (see appendix
in (Palacios et al. 2009a)). Therefore, to further explore the role of correlation in
electron dynamics in the subfemtosecond regime we must analyze the electron angular
distributions.

The qualitative behaviour of the angular distributions of the ejected electrons for
femtosecond pulses is shown in Fig. 5. We plot the angular distributions obtained
with a pulse of 1 fs for both extreme situations: at a photon energy of 46 eV and
50% energy sharing (below the sequential threshold and the total energy available
equally shared) and 58 eV and 10% energy sharing (above the threshold and right
on top of one of the sequential peaks for the energy distribution). When both
electrons are ejected simultaneously by a nonsequential absorption process (46 eV), the
angular distributions show a propensity for back-to-back ejection. This is an expected
behaviour due to the important role of correlation between the electrons in this process.
On the other hand, for 58 eV at 10% energy sharing, the angular distributions are
fairly well described by a product of dipole patterns (cos2(θ1) cos2(θ2)). Here we see
a largely uncorrelated angular behavior, with each electron independently ejected by
each photon.

A different electron dynamics arises in the sequential region when using
subfemtosecond pulses. In Fig. 6, we plot, together with the one fs results, the electron
angular distributions for 450 and 250 as pulses for a photon energy of 58 eV and 10%
energy sharing. We show that shortening the pulse lengths in the subfemtosecond
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Figure 5. (Color online) Angular distributions at 46 eV photon energy with 50%
energy sharing (left column) and 58 eV with 10% energy sharing(right column).
Each row corresponds to a different angle of one electron fixed with respect to
the polarization vector (horizontal axis). Results are shown for a pulse duration
of one fs and calculated with lmax = 7.
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Figure 6. (Color online) Angular distributions from calculations including up
to lmax = 7 for a photon energy of 58 eV with energy sharing of 10% and pulse
lengths of 1 fs, 450 as and 250 as. Note that the all cross sections are normalized
to the 1 fs TDCS for easier comparison of the shapes.

regime leads to an increasingly back-to-back ejection pattern, i.e., we are probing
a different dynamics as the pulse length is shortened: at those energy sharings
where femtosecond pulses show dipole patterns related to uncorrelated processes,
subfemtosecond pulses reveal the signatures of the nonsequential mechanism of ejection
as also found by (Feist et al. 2009b). Therefore, while the pulse length dependence of
the electron energy distributions can be simply explained by the Fourier broadening
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of the subfemtosecond pulses, the variation of the angular distributions with pulse
duration is actually probing the electron dynamics of photoejection, disentangling the
features of sequential and nonsequential ionization processes (Palacios et al. 2009a).

Since the angular distributions produced in two-photon sequential and
nonsequential ionization are strikingly different, they leave a clear signature in the
nuclear recoil distributions. The ion recoil momentum Q accompanying double
ionization is simply −k1 − k2. We can therefore define a nuclear recoil cross section,
at a particular energy sharing E1, in terms of the two-photon TDCS as

dσ

d3QdE1
=

∫
dΩ1

∫
dΩ2

dσ2ω

dE1dΩ1dΩ2
δ3(Q + k1 + k2) . (14)

The distribution of ion recoil momentum, integrated over all energy sharings, presents
an attractive target for experimental detection, since it does not require detection of
the photoemitted electrons. A procedure for carrying out the numerical evaluation of
the integral in Eq. (14) is outlined in (Horner, McCurdy & Rescigno 2008).

Fig. 7 shows ion momentum recoil distributions for a photon energy of 52 eV,
which is close to the sequential ionization threshold. (The raggedness in the figures
is not physical, but rather the result of numerical error in the plotting renditions).
These distributions were obtained from calculations using a 2 fs pulse. At 52 eV,
the electron energy sharing distributions are peaked at extreme unequal energy
sharing, since “virtual sequential” ionization is beginning to dominate the electron
dynamics (Horner, Rescigno & McCurdy 2008). However, inspection of the TDCS at
this photon energy shows that the electron dynamics is still dominated by back-to-
back ejection along the direction of photon polarization (Horner et al. 2010), reflecting
the importance of correlation in the nonsequential region. The resulting ion recoil
distributions show the development of prominent rings at unequal energy sharing and
these rings dominate the ion recoil distribution, even when integrated over all energy
sharings. In purely sequential ionization, the faster electron can give a strong kick to
the nucleus in either direction along the polarization axis with a cos2 θ distribution,
while the slower electron gives a smaller kick that either adds to or subtracts from
the first. The result would be a four-ringed pattern in the nuclear recoil distribution.
However just below the sequential threshold, as Fig. 7 shows, the outer rings at unequal
energy sharing are strongly suppressed, since back-to-back ejection is dominant.
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Figure 7. (Color online.) Nuclear recoil momentum distributions, integrated
over Qy , at 52 eV photon energy for calculations using a 2 fs pulse. Polarization
is along the z-axis. Energy sharings, left to right: top row, 50%, 70%; bottom
row, 90%, integrated over energy sharing.
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4. Two-color time-delayed two-photon double ionization

Pump/probe experiments with subfemtosecond pulses of different colors that are both
in the UV or XUV provide a way to interrogate the electron dynamics of correlated
states, for example doubly excited autoionizing states. The large bandwidths of
subfemtosecond pulses are both an essential advantage and a complication in those
experiments, since the pump pulse can create a wave packet of many excited states of
the target, and the probe, especially if it is at ionizing energies, can interrogate all of
them simultaneously. Such experiments on two-electron atoms have been modeled in
detailed theoretical calculations (Hu & Collins 2006, Morishita et al. 2007, Palacios
et al. 2009b) that suggest they have the power to expose correlation effects not
otherwise accessible experimentally, but such UV/XUV pump/probe experiments are
only beginning to be realized.
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a time delay of τ = 750 as between them. Bottom right: Expected energies for
electrons ejected from each sequential process.

Here we discuss an aspect of such measurements that is connected specifically
to the bandwidths of the pulses, namely the case where the atom is doubly ionized
mainly through a sequential process that ejects electrons with similar energies. For
this purpose, we choose two pulses of central frequencies of 35 and 69 eV, ejecting
electrons with energies centered around 10.4 eV and 14.6 eV respectively. A schematic
representation of the energetics involved in the process is shown in Fig. 8. In the
sequential process, the 35 eV photon is absorbed first leaving the helium ion in its
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ground state, and the 69 eV photon ionizes the ion, ejecting the second electron. Since
we are using subfemtosecond pulses with large energy bandwidths, those electron
energy distributions will overlap, and because electrons are indistinguishable, an
electron ejected with a given energy within the overlapping bandwidths can have been
ejected by either pulse. Therefore, when the pulses are absorbed with a time delay
between them, the resulting photoelectron energies probabilities show interference
oscillations that contain information about the sequential ejection process revealed by
variations with both the time delay and the pulse durations.

τ = 1 fs

 0  5  10  15  20  25  30  35
E2 (eV)

 0

 5

 10

 15

 20

 25

 30

 35

E
1 

(e
V

)

τ = 750 as

 0  5  10  15  20  25  30  35
E2 (eV)

 0

 5

 10

 15

 20

 25

 30

 35

E
1 

(e
V

)

τ = 500 as

 0  5  10  15  20  25  30  35
E2 (eV)

 0

 5

 10

 15

 20

 25

 30

 35

E
1 

(e
V

)

No delay

 0  5  10  15  20  25  30  35
E2 (eV)

 0

 5

 10

 15

 20

 25

 30

 35

E
1 

(e
V

)

Figure 9. (Color online.) Joint electron energy distributions for pulse durations
T1 = T2 = 500 as. Each panel corresponds to a different time delay between
pulses.

Quantum interference arising from exchange symmetry was predicted some years
ago (Végh & Macek 1994) and observed in coincidence measurements of photoelectrons
and Auger electrons (Schwarzkopf & Schmidt 1996, Viefhaus et al. 1998). For that
interference phenomenon to be observed, the photoelectron energy must lie within the
Auger width of the energy of the Auger electron, and the only adjustable condition
in the experiment is the photoelectron energy. Here the variable time-delay, energies
and bandwidths of two subfemtosecond UV pulses open the possibility of a generally
applicable experimental technique that is sensitive to the exchange symmetry, and
therefore the spin coupling of the ejected electrons.

In order to explore the time delay dependence of these two-electron interference
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patterns, we carried out calculations solving the time-dependent Schrödinger equation
for different time delays, with fixed choices of the pulse durations. We choose an
intensity of 1012 W cm−2 for the first pulse centered at 35 eV and 2 × 1012 W cm−2

for the second one at 69 eV in all cases. For the time-propagation, as well as for
the extraction of the corresponding amplitudes, we use the methodology described in
Section 2 with the electromagnetic field given by

E(t) = (Eω1(t) + Eω2(t))ǫ , (15)

corresponding to two pulses with the same polarization vector ǫ but different colors.
On the time intervals where each individual pulse is nonzero, the terms in Eq. (15)
are specified by

Eω1(t) = E
(1)
0 f (1)(t) sin(ω1t), t ∈ [0, T1]

Eω2(t) = E
(2)
0 f (2)(t− t2) sin(ω2(t− t2)), t ∈ [t2, T ]

(16)

where f (i)(t) is chosen to be a sine-squared pulse envelope. The pulse durations are
T1 and T2; τ is the time delay between the centers of the pulses as sketched in the top
right panel of Fig. 8, and t2 = τ + (T1 − T2)/2.

In Fig. 9, electron energy-sharing distributions, k1k2

∫
dΩ1

∫
dΩ2|C(k1,k2)|2, as

functions of the energy of each electron are plotted for the case that both pulses are
500 as long, and show the entire energy-sharing patterns for different time delays
that would be obtained in a coincident detection of the electron energies integrated
over the angles of photoejection. To produce each panel of Fig. 9 double ionization
probabilities have been extracted from a single wave packet solution of the TDSE for
a range of total energies centered at the total electron energy that results from the
sum of the central energies of the pulses (104 eV) less the total binding energy of
the helium atom. The bandwidths seen in these plots are determined by the pulse
durations, i.e., longer pulses would lead to a narrower spread in the total available
energy to be shared by the electrons.

When both pulses reach the target simultaneously (τ = 0) there is a single peak
with maximum ionization probability centered at equal energy sharing at the total
energy determined by the central frequencies of the pulses. As the time delay increases
(to 500 as, 750 as and 1 fs in Fig. 9), an increasing number of oscillations appear in
these joint energy distributions. The separations of the peaks as function of the
difference in the electron energies, E2 − E1, is a measure of the time delay between
the pulses, and it can be estimated from this figure for pulses of equal duration to be
approximately 2π~/τ .

We can understand the origin of these interferences in atoms by using a simple
model from second-order time-dependent perturbation theory detailed in (Palacios
et al. 2009b) that completely neglects electron-electron interaction in the doubly
ionized state, as well as electron correlation and screening in the sum over intermediate
states. Applying this model to the cases in which the pulses do not overlap in time,
an approximate amplitude for double ionization in the range of energies of interest
here can be written as

C(k1,k2) ≈
(−i

~

)2
1√
2

×
{
ei(α(k1)+ω2)∆t J2(α(k1))J1(β(k1))〈ϕ(−)

k2
|µ|ϕHe+

1s 〉〈ψ−

k1,1s|µ|Φ0〉

+ei(α(k2)+ω2)∆t J2(α(k2))J1(β(k2))〈ϕ(−)
k1

|µ|ϕHe+

1s 〉〈ψ−

k2,1s|µ|Φ0〉
}
.(17)
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In Eq. (17) the amplitudes for the two sequential ionization events appear separately.
The first is the dipole matrix element, 〈ψ−

k,1s|µ|Φ0〉 between the ground state of the

helium atom, Φ0, and the continuum state,ψ−

k,1s, for the singly ionized intermediate

state with an electron scattering from the ground state of He+. The second ionization

amplitude, 〈ϕ(−)
k

|µ|ϕHe+

1s 〉, is the dipole matrix element for ionization of He+ in which

ϕ
(−)
k

denotes a momentum-normalized Coulomb scattering function with charge Z = 2.
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model (see text). Full thin curves are the squared values of Ji defined in Eq. (18)
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calculations.

Products of these dipole matrix elements corresponding to the two possible orders
of ejection (electron 1 before 2 and 2 before 1) appear added together in Eq. (17) with
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coefficients that arise from time-dependent perturbation theory. Those coefficients
are functions of the three quantities α(ki) = k2

1/2 + k2
2/2 − k2

i /2 − E1s(He+) − ω2,

β(ki) = k2
i /2 + E1s(He+) − EHe − ω1, and ∆t = τ + (T1 − T2)/2. These quantities

appear as parameters in integrals that depend on the pulse shapes and have the form

Ji(γ) ≡ E
(i)
0

∫ Ti

0

eiγtf (i)(t)dt, (18)

where f (i)(t) appears in Eq.(16) and here has the form sin2(πt/Ti). It is these
functions, J1 and J2, that reflect the bandwidths of the two pulses. To simplify this
model even further, the dipole amplitudes can be approximated in terms of the square
roots of the single photoionization cross sections of He and He+, thereby neglecting
their phases. Thus the model gives the double ionization probabilities in terms of
quantities pertaining only to the two separate sequential steps.

The coherent addition of the two terms in Eq. (17), corresponding to the
“direct” and “exchange” processes in which the electrons are emitted in different
orders, is responsible for the oscillations in the double ionization probabilities,
|C(k1,k2)|2, as a function of the energies of the electrons. In Fig. 10, the
probability distribution k1k2

∫
dΩ1

∫
dΩ2|C(k1,k2)|2 obtained from the model is

plotted together with the products of the Ji integrals appearing in Eq. (17). When the
pulse durations are short enough that the corresponding energy bandwidths lead to
products J2(α(k1))J1(β(k1)) and J2(α(k2))J1(β(k2)) that overlap, the energy-sharing
distributions show the interference pattern. However, as we increase the pulse duration
to 5 fs, decreasing the energy bandwidth, there is no overlapping region and the
oscillations disappear, leading to the two well defined peaks that we would expect
from the sequential double ionization process. In Fig. 10 we have also plotted in the
top panels the accurate results obtained in our ab initio calculations, showing that
remarkably good quantitative agreement can be obtained with the model in spite of
the extreme oversimplification of the physics it represents.

The simple model shows how the indistinguishability of the electrons, and the
fact that their spins must remain coupled in the same way as in the initial state of the
atom (singlet in this case) produces the interference pattern. Thus the spin coupling
is of the outgoing electrons is being probed by the interference pattern. If the initial
state of He were a triplet, the plus sign in Eq. (17) would be a minus, and minima
would appear where there are maxima, and vice versa, in the interference patterns in
Figs. 9 and 10.

However, we should remark that, although the sequential model correctly
describes the features of the photoelectron energy-sharing distribution, it fails to
describe the angular distributions of photoelectrons, especially for short time delays
(Palacios et al. 2009b), where there exists a strong interaction in the final state. While
the sequential model predicts a product of dipole patterns, cos2(θ1) cos2(θ2), for the
angular distributions of the ejected electrons, back-to-back ejection is observed for
pulses with no time delay, which persists, in spite of an apparent tendency to the
dipole pattern, up to around τ = 1 fs.

5. Conclusion

Free-electron lasers, like FLASH, can produce ultrashort pulses of sufficient intensity
that multiphoton, multiple ionization processes become the dominant processes when
they collide with atoms and molecules. Such experiments are expected to be able to
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probe correlated electron dynamics in atoms and in complex molecules, and observe
them in combination with vibration, dissociation and chemical reactions.

In spite of the apparent simplicity of the target, or perhaps because of it, the
body of experiments and accurate theory on two-photon short pulse ionization of the
helium atom will be the urtext for such processes in more complicated systems, and we
can expect many further studies on this system. The majority of those experiments,
and much of the theory, have yet to be done, and they are not motivated primarily by
need to understand the correlated electron dynamics of three body Coulomb breakup,
but rather by the question of how that dynamics is revealed in ultrafast experiments.

For example, pump/probe experiments on the doubly excited states of helium,
long a subject of theoretical and experimental interest because of their highly
correlated nature, will be the subject of these investigations now that free-electron
lasers and other XUV sources are making them a practicality. Perhaps most
importantly, the interplay between theory and experiment for this system, for which
we can expect that essentially exact calculations can be performed, will allow the
benchmarking of experiments in which sensitive detection schemes must be employed
to disentangle the various channels of ionization processes possible under given
conditions.
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